
Squash TF Java Junit Runner
Documentation

squashtest

Apr 01, 2020

Contents

1 Runner Functions 1
1.1 List implemented Junit tests . 1
1.2 Junit test Running . 3
1.3 Junit test Metadata Checking . 4

2 Junit tests reference scheme 7
2.1 Tests naming scheme . 7
2.2 Tests with the same @displayName . 8

3 Metadata in JUnit runner 9
3.1 Configuration : new dependency . 9
3.2 Metadata syntax conventions . 10
3.3 Use metadata for TM - TF autolink . 11

4 TF Param Service 13
4.1 Configuration . 13
4.2 Call the service . 13
4.3 Available methods . 14
4.4 Manually provide .json file . 14

5 Creating projects 17
5.1 Starting a new project . 17
5.2 Tests implementation: sample with SoapUI Smartbear Api . 17

6 Overview 21

i

ii

CHAPTER 1

Runner Functions

The runner is transparent and should be able to run any Maven Junit 4 or 5 project without any need to modify it.
Indeed the Mojos are implemented in such a way that they are fully autonomous and do not need any project specific
configuration to run.

1.1 List implemented Junit tests

This Mojo enables one to list as a Json file the available implemented tests. In order to do so one only needs to run the
following command :

mvn clean compile test-compile org.squashtest.ta.galaxia:squash-tf-junit-runner-maven-
→˓plugin:1.0.0-RELEASE:list

The command is structured as follows

• mvn : launch Maven

• clean : (Optional) One of Maven default goals that enables one to clean everything that has been previously
build by Maven.

• compile : One of Maven default goals that enables one to compile code that is stored in src/main.

• test-compile : One of Maven default goals that enables one to compile code that is stored in src/test.

• org.squashtest.ta.galaxia:squash-tf-junit-runner-maven-plugin:1.0.
0-RELEASE:list : the actual listing Mojo provided by the Squash TF Java Junit Runner. It lists
all Junit tests that can be discovered (in the Junit sense) in the code compiled during the “compile” and
“test-compile” phases.

The result should be a Json file named testTree.json located at target/squashTA/test-tree. It is a simple JavaScript table
listing available test grouped by “ecosystems”. Ecosystem naming follows the convention explained in the Junit tests
reference scheme section above.

1

Squash TF Java Junit Runner Documentation

1.1.1 ‘list’ goal with Metadata

If there are metadata in the current test project, the goal “list” searches and checks if all metadata in this JUnit
project respect the conventions for writing and using Squash TF metadata. (See Metadata in JUnit runner for more
information about Metadata syntax conventions)

The goal will check through the project, collect all the metadata error(s) if any and lead to the FAILURE. Otherwise, a
SUCCESS result will be obtained.

Metadata error(s), if found, will be grouped by test names.

1.1.2 Listing test JSON report with Metadata

If the build is successful, the generated report (JSON file) will contain the metadata associated with each of the test
scripts.

{
"timestamp": "2019-09-23T14:56:24.761+0000",
"name": "tests",
"contents": [{

"name": "maven.test.bundle:com.example.project.CalculatorTest2",
"contents": [{

"name": "testAdd()",
"metadata": {},
"contents": null

}, {
"name": "This is my test",
"metadata": {

"key1..": null
},
"contents": null

}, {
"name": "testAddWithTFMetadata2()",
"metadata": {

"key2": ["value2"]
},
"contents": null

}, {
"name": "testAddWithTFMetadata3()",
"metadata": {

"Key3-": null,
"key_4": ["value4"],

(continues on next page)

2 Chapter 1. Runner Functions

Squash TF Java Junit Runner Documentation

(continued from previous page)

"Key53": ["value4-","value4-"]
},
"contents": null

}
]

}

Note: To ignore thoroughly metadata during the listing process as well as in the report, insert tf.disableMetadata
property after the goal “list”.

mvn clean compile test-compile org.squashtest.ta.galaxia:squash-tf-junit-runner-maven-
→˓plugin:1.0.0-RELEASE:list -Dtf.disableMetadata=true

or as a property in the pom.xml file

<properties>
<tf.disableMetadata>true</tf.disableMetadata>

</properties>

1.2 Junit test Running

This Mojo enables one to run a selection of, or all possible, Junit tests and report their execution. In order to do so one
only needs to run the following command :

mvn clean compile test-compile org.squashtest.ta.galaxia:squash-tf-junit-runner-maven-
→˓plugin:1.0.0-RELEASE:run

• mvn : launch Maven

• clean : (Optional) One of Maven default goals that enables one to clean everything that has been previously
build by Maven.

• compile : One of Maven default goals that enables one to compile code that is stored in src/main.

• test-compile : One of Maven default goals that enables one to compile code that is stored in src/test.

• org.squashtest.ta.galaxia:squash-tf-junit-runner-maven-plugin:1.0.
0-RELEASE:run : the actual running Mojo provided by Squash TF Java Junit Runner. It runs the
Junit tests that can be discovered (in the Junit sense) in the code compiled during the “compile” and
“test-compile” phases.

By default the whole collection of tests available in the project will be executed. A summary of the execution is
reported and available at target/squashTA/html-reports/squash-ta-report.html . A more detailed version of the report
providing context in the case of technical error is also produced and available at target/squashTA/html-details/squash-
ta-report.html. Finally a surfire report is also produced and available at target/squashTA/surefire-reports/ .

If one wants to only run a subset of possible test one can provide a list of tests via the Maven property “tf.test.suite”.
Two mechanism are possible:

• Mimic TM-TF link and provide a list of selected test via a Json file. In this scenario the tf.test.suite parameter
should be given the value “{file:testsuite.json}” and the testsuite.json should be put right to the project pom.

• Provide a CSV like line, where qualified tests names are listed separated by semicolons

1.2. Junit test Running 3

file:testsuite.json

Squash TF Java Junit Runner Documentation

In both cases test convention should follow the one used by the listing Mojo and described in the Junit tests reference
scheme section above.

Warning: If there are metadata syntax errors in the running test script(s), warning message(s) will be displayed
in the console. (See Metadata in JUnit runner for more information about Metadata syntax conventions)

1.3 Junit test Metadata Checking

As the goal “list”, the goal check-metadata searches and checks if all metadata in this JUnit project respect the
conventions for writing and using Squash TF metadata. (See Metadata in JUnit runner for more information about
Metadata syntax conventions)

mvn clean compile test-compile org.squashtest.ta.galaxia:squash-tf-junit-runner-maven-
→˓plugin:1.1.0-RELEASE:check-metadata

The goal will check through the project, collect all the metadata error(s) if any and lead to the FAILURE. Otherwise, a
SUCCESS result will be obtained. (However, no JSON report will be created with a successful check-metadata goal.)

Metadata error(s), if found, will be grouped by test names.

When a JUnit project has duplicate values in a multi-value key on a given test, the check-metadata goal will create a
WARNING message in the console.

1.3.1 ‘check-metadata’ goal with Unicity checking

In addition to the normal syntax checking, you can insert the tf.metadata.check property after the goal “check-
metadata” to check the unicity of each Metadata Key - Value pair.

mvn clean compile test-compile org.squashtest.ta.galaxia:squash-tf-junit-runner-maven-
→˓plugin:1.1.0-RELEASE:check-metadata -Dtf.metadata.check=[valueUnicity]

4 Chapter 1. Runner Functions

Squash TF Java Junit Runner Documentation

If there are metadata Key - Value duplicate(s) existed in the SKF project (even if the syntax is OK), a FAILURE result
will be obtained.

‘check-metadata’ goal with Unicity checking for specific Keys

You can even check the unicity of each metadata Key - Value pair with just some specific Keys by inserting the second
property tf.metadata.check.key after the first one mentioned above.

mvn clean compile test-compile org.squashtest.ta.galaxia:squash-tf-junit-runner-maven-
→˓plugin:1.1.0-RELEASE:check-metadata -Dtf.metadata.check=[valueUnicity] -Dtf.
→˓metadata.check.keys=[xxx,yyy,zzz]

Important: In the bracket, the key list MUST be a string of characters composed by concatenation from 1 to n keys
separated by commas: -Dtf.metadata.check.keys=[xxx,yyy,zzz]

If the list is surrounded by double quotes, spaces are allowed: -Dtf.metadata.check.keys=”[xxx, yyy, zzz]”

It is NOT allowed to have two commas without any key OR only spaces/tabulations between them. (ex: -
Dtf.metadata.check.keys=”[xxx, ,yyy„zzz]”)

Key list is NOT allowed to be either uninitiated or empty. (ex: -Dtf.metadata.check.keys= OR -
Dtf.metadata.check.keys=[])

For each searched metadata key, if there are Key - Value duplicate(s) existed in the SKF project, a FAILURE result
will be obtained.

1.3. Junit test Metadata Checking 5

Squash TF Java Junit Runner Documentation

Note: If searched metadata key(s) are not found in any Test files, a WARNING message will be raised in the console.

6 Chapter 1. Runner Functions

CHAPTER 2

Junit tests reference scheme

2.1 Tests naming scheme

Junit tests detected in the project have to receive unique - and as far as possible readable - names in the runner system.
Such names are used in the following contexts :

• Listing available tests

• Requiring the runner to run a subset of tests

• Linking Squash TM test cases to the junit test covering it

• Displaying tests results in execution reports

In this context, we define the qualified name of the Junit test as follows :

bundle-name:qualified_class_name/Display Name, where:

• bundle-name : name of the code bundle in which the tests are defined. The runner defines two such bundles
:

– maven.main.bundle : junit code from maven main sources (by default located in the src/main/
java and src/main/resources subdirectories)

– maven.test.bundle : junit code from maven test sources (by default located in the src/test/
java and src/test/resources subdirectories)

• qualified_class_name : the dot-separated qualified name of the class where the test is defined, as speci-
fied by java conventions.

• Display Name : the display name of the test, as defined by junit. By default this is the name of the method
that defines the test, but junit allows you to override this using the @DisplayName annotation.

This test name appears in test lists for the TM-TF link, they may also be used to select tests to run from the command
line (see below).

There is a small difference in test execution reports : tests are grouped in test groups named ecosystems. These
groups are defined like the prefix we add to the Display Name to make qualified test names : according to the code

7

Squash TF Java Junit Runner Documentation

bundle and test class. Ecosystems are named accordingly, but the separator between the bundle and class parts is a dot
instead of a colon :

bundle-name.qualified_class_name

In these reports, tests appear under a qualified test result name where the colon and slash separators are also replaced
by a dot :

bundle-name.qualified_class_name.Display Name

2.2 Tests with the same @displayName

The use of the @displayName junit annotation allows you to give two tests from the same class the same unqualified
display name. And as these tests come from the same class, in the same bundle, this will given them the same qualified
display name through the runner.

We consider this bad practice and strongly advise against it, even if you don’t use our runner. Giving two tests the
same display name will tend to make reports harder to read: if two or more tests cover exactly the same case, then why
use time and work to write more than one test, and read more than one result ? On the other hand, if they test different
things you should make yourself a favor and name them differently, to avoid confusion.

If, however, you have inherited such tests, or you have your own reason to go against this advice, the runner will work
with this tests in the following way :

• All tests with the same qualified display name will be seen as a single test, and listed and executed as such.

– All junit tests will be executed and checked as a global unit which result will be the worst result of any
test.

• You will be able to link this global functional test defined by its common qualified display name to Squash TM
test cases as any other automated test, execute the test case and see the result from Squash TM

Known limitation : if several tests share the same qualified display name, the runner will not handle metadata decla-
ration (defined through the use of Squash TF’s @Metadata annotations on the methods) properly. We intend to fix
this in a later version.

8 Chapter 2. Junit tests reference scheme

CHAPTER 3

Metadata in JUnit runner

In your JUnit project, you can insert Squash Metadata into test methods via an Annotation named TFMetadata. For
example:

@Test
@DisplayName("This is my test with Squash Metadata")
@TFMetadata(key ="key", value ={"value"})
public void testAddWithTFMetadata1() {

Calculator calculator = new Calculator();
assertEquals(2, calculator.add(1, 1), "1 + 1 should equal 2");

}

3.1 Configuration : new dependency

In order to be able to use TF metadata in your Junit project, you have to add a new dependency to your project.

To do so :

1. Add to the dependencies section of your project pom.xml the following dependency :

<dependency>
<groupId>org.squashtest.ta.galaxia</groupId>
<artifactId>squash-tf-galaxia-annotations</artifactId>
<version>1.0.0-RELEASE</version>

</dependency>

2. Add to the repositories section (or create it if doesn’t exist) of your project pom.xml the following repos-
itory. (This is needed because our dependency is not available on maven central but only in our repository)

<repositories>
<repository>

<id>org.squashtest.ta.release</id>
<name>squashtest test automation - releases</name>

(continues on next page)

9

Squash TF Java Junit Runner Documentation

(continued from previous page)

<url>http://repo.squashtest.org/maven2/releases</url>
</repository>

</repositories>

3.2 Metadata syntax conventions

In a Metadata annotation, the key is mandatory. A metadata key MUST be ONE WORD which contains only alphanu-
meric characters, dashes, underscores and dots. Spaces/tabulation are allowed before and after the word.

Moreover, metadata key is case insensitive and must be unique in a test file, even a test method.

@Test
@DisplayName("For a typical Metadata Key")
@TFMetadata(key =" Key.01-is_Insensitive-and_MUST-be_UNIQUE ", value ={"value"}
→˓)
public void testAddWithTFMetadata2() {

Calculator calculator = new Calculator();
assertEquals(3, calculator.add(1, 2), "1 + 2 should equal 3");

}

On the other hand, the value is optional. However, a Metadata value, if it exists, MUST be ONE WORD containing
only alphanumeric characters, dashes, slashes, underscores and dots. Spaces/tabulation are also allowed before and
after the word.

Metadata value is case sensitive and must be assigned to a metadata key. It is also possible to have many metadata
values associated to a same key.

@Test
@TFMetadata(key ="key1")
public void testAddWithTFMetadata3() {

Calculator calculator = new Calculator();
assertEquals(4, calculator.add(1, 3), "1 + 3 should equal 4");

}

@Test
@TFMetadata(key ="key2", value ={})
public void testAddWithTFMetadata4() {

Calculator calculator = new Calculator();
assertEquals(5, calculator.add(1, 4), "1 + 4 should equal 5");

}

@Test
@TFMetadata(key ="key3", value ={" pathTo/Value.03-is_Sensitive "})
public void testAddWithTFMetadata5() {

Calculator calculator = new Calculator();
assertEquals(6, calculator.add(1, 5), "1 + 5 should equal 6");

}

@Test
@TFMetadata(key ="key4", value ={"value1", "Value2", "value3"})
public void testAddWithTFMetadata6() {

Calculator calculator = new Calculator();
assertEquals(7, calculator.add(1, 6), "1 + 6 should equal 7");

}

10 Chapter 3. Metadata in JUnit runner

Squash TF Java Junit Runner Documentation

A test method can be associated with from zero to many Metadata.

@Test
@DisplayName("No metadata")
public void testAddWithTFMetadata7() {

Calculator calculator = new Calculator();
assertEquals(8, calculator.add(1, 7), "1 + 7 should equal 8");

}

@Test
@DisplayName("With one metadata")
@TFMetadata(key ="key", value ={"value"})
public void testAddWithTFMetadata8() {

Calculator calculator = new Calculator();
assertEquals(9, calculator.add(1, 8), "1 + 8 should equal 9");

}

@Test
@DisplayName("With many metadata")
@TFMetadata(key ="key1", value ={})
@TFMetadata(key ="key2", value ={"value"})
@TFMetadata(key ="key3", value ={"value1", "value2"})
public void testAddWithTFMetadata9() {

Calculator calculator = new Calculator();
assertEquals(10, calculator.add(1, 9), "1 + 9 should equal 10");

}

Important: Please ensure that all Metadata keys in every JUnit method of a Test script are unique.

3.3 Use metadata for TM - TF autolink

TF metadata handles the TM - TF autolink. (TM - TF autolink is available since TM 1.20.0 and Java Junit Runner
1.1.0) Autolink is a feature to ease the link between a TM test case and a test automation script. On TM side, a UUID
is now provided (when the workflow is activated) :

This UUID is used as an identifier.

In your automation test add a TF Metadata which key is linked-TC and value is the UUID from the corresponding
TM test case. As you can see in the example below, it’s possible to link many TM test case to the same automation
test (two UUID are set in the “value”):

3.3. Use metadata for TM - TF autolink 11

Squash TF Java Junit Runner Documentation

12 Chapter 3. Metadata in JUnit runner

CHAPTER 4

TF Param Service

This service allows you to retrieve the values of the parameters that are present in a .json file in order to use them in
your JUnit test.

Warning: TF Param Service will only work properly with 1.2.0-RELEASE (or newer) version of TF JUnit
Runner.

4.1 Configuration

In order to be able to use TF param Service in your JUnit project, you need to add a new dependency to your project.

Add the following dependency to the pom.xml of your project :

<dependency>
<groupId>org.squashtest.ta.galaxia</groupId>
<artifactId>tf-param-service</artifactId>
<version>1.0.0-RELEASE</version>

</dependency>

4.2 Call the service

If you want to use methods of the service in your JUnit test, you first need to call it. To do so, write the following:

TFParamService.getInstance().[methodName()];

You will need to write this everytime you want to use the service.

13

Squash TF Java Junit Runner Documentation

4.3 Available methods

• getTestParam(String paramName) : Returns a String of the value associated with the “paramName” parame-
ter in the params section of the test in the supplied .json file. Returns << null >> if it can not be found.

• getTestParam(String paramName, String defaultValue) : Returns a String of the value associated with the
“paramName” parameter in the params section of the test in the supplied .json file. Returns defaultValue if it
can not be found.

• getParam(String paramName) : Search the “paramName” parameter in the test params section of the test in
the supplied .json file. If the service does not find it, it looks in the global-params section. Returns a String of
the result of its search or << null >> if nothing was found.

• getParam(String paramName, String defaultValue) : Search the “paramName” parameter in the test params
section of the test in the supplied .json file. If the service does not find it, it looks in the global-params section.
Returns a String of the result of its search or defaultValue if nothing was found.

• getGlobalParam(String paramName) : Returns a String of the value associated with the “paramName” pa-
rameter in the global-params section of the supplied .json file. Returns << null >> if it can not be found.

• getGlobalParam(String paramName, String defaultValue) : Returns a String of the value associated with
the “paramName” parameter in the global-params section of the supplied .json file. Returns the defaultValue if
it can not be found.

4.4 Manually provide .json file

If you want to manually provide the .json file, you need to add the following parameter -
Dtf.test.suite={file:path/to/json/FileName.json} to your maven goal.

“path/to/json/FileName.json” must be the relative path of your .json file from the root of your project.

If the .json file is located directly at the root of your project, just type -Dtf.test.suite={file:FileName.json}

For example :

mvn clean compile test-compile org.squashtest.ta.galaxia:squash-tf-junit-
→˓runner-maven-plugin:1.2.0-RELEASE:run -Dtf.test.suite={file:testSuite.json}

Example of .json file :

{
"test": [{

"id": "39",
"script": "maven.test.bundle:org.squashtest.tf.other.OtherExampleTest/

→˓Other Jupiter Test Display Name",
"param": {

"TC_REFERENCE": "",
"TC_CUF_CUF_CUSTOM": "true",
"TC_UUID": "3a7099ff-ab59-4e99-b21d-07e7d71d1ed5"

}
}, {

"id": "40",
"script": "maven.test.bundle:org.squashtest.tf.other.OtherExampleTest/

→˓Other Jupiter Test Display Name",
"param": {

"TC_REFERENCE": "",
"DS_name": "Bertrand",

(continues on next page)

14 Chapter 4. TF Param Service

Squash TF Java Junit Runner Documentation

(continued from previous page)

"DSNAME": "dataset1",
"TC_CUF_CUF_CUSTOM": "true",
"DS_age": "41",
"TC_UUID": "adec6164-5dec-4c8c-a0ae-c036340d519b"

}
}, {

"id": "41",
"script": "maven.test.bundle:org.squashtest.tf.other.OtherExampleTest/

→˓Other Jupiter Test Display Name",
"param": {

"TC_REFERENCE": "",
"DS_name": "Damien",
"DSNAME": "dataset2",
"TC_CUF_CUF_CUSTOM": "true",
"DS_age": "undefined",
"TC_UUID": "adec6164-5dec-4c8c-a0ae-c036340d519b"

}
}],

"param": {
"globalParamSection": "This is global param section",
"user": "foo",
"ow_ner.Na-me": "bar",

}
}

4.4. Manually provide .json file 15

Squash TF Java Junit Runner Documentation

16 Chapter 4. TF Param Service

CHAPTER 5

Creating projects

5.1 Starting a new project

In case you are starting a new Maven Java Junit project from scratch, a Maven archetype is provided to help you gener-
ate a correctly structured project with recommended dependencies. The archetetype group Id is org.squashtest.
ta.galaxia, the archetype artifact Id is squash-tf-junit-runner-project-achetype and the current
version is 1.0.0-RELEASE. Hence, to use it simply run the following command :

mvn archetype:generate -DarchetypeGroupId=org.squashtest.ta.galaxia -
→˓DarchetypeArtifactId=squash-tf-junit-runner-project-archetype -DarchetypeVersion=1.
→˓0.0-RELEASE

5.2 Tests implementation: sample with SoapUI Smartbear Api

Once your project is created, you just have to implement your tests as Junit tests according to the version of Junit
chosen.

Here is an example to run a REST test with the open source API proposed by SoapUI Smartbear.

We used:

• a REST test given in the tutorial installed with version 5.5.0 of SoapUI Smartbear software.

• the open source SoapUI Smartbear API version 5.1.3

• the TF JUnit runner version 1.0.0-RELEASE

• junit (jupiter) version 5.2.0

We have set in the POM’s project the version of junit chosen:

17

Squash TF Java Junit Runner Documentation

You need to add the external dependency the SoapUI API in your POM file as follows:

In this example, you must also add in your POM a block for the Smartbear repository:

18 Chapter 5. Creating projects

Squash TF Java Junit Runner Documentation

Create your test class and implement it. Your project now looks like this:

Launch the TF junit runner:

The HTML results file of the execution squash-ta-report.html is available in the subdirectory squashTA/html-
report of the target folder.

5.2. Tests implementation: sample with SoapUI Smartbear Api 19

Squash TF Java Junit Runner Documentation

Note: If you have not started the server mock, as indicated in the SoapUI tutorial, your test will fail on a connection
error.

20 Chapter 5. Creating projects

CHAPTER 6

Overview

The Squash Test Factory (Squash TF) Java Junit Runner aims to provide a seamless integration to our ecosystem
when automated test are already (will be) implemented using Java as a language and Junit as the underlying test
framework.

As a Squash TF runner its main goal is twofold :

• List in JavaScript Object Notation (Json) format the available implemented tests

• Run a selection (that can include all available tests) and report the execution. In the case where the execution or-
der originates from Squash Test Management (Squash TM), test status and report are sent back to Squash TM.

The actual implementation of the Runner is based on the Maven technology. More precisely each major feature (“List”
and “Run”) is provided via an implementation of a Maven Mojo.

21

	Runner Functions
	List implemented Junit tests
	Junit test Running
	Junit test Metadata Checking

	Junit tests reference scheme
	Tests naming scheme
	Tests with the same @displayName

	Metadata in JUnit runner
	Configuration : new dependency
	Metadata syntax conventions
	Use metadata for TM - TF autolink

	TF Param Service
	Configuration
	Call the service
	Available methods
	Manually provide .json file

	Creating projects
	Starting a new project
	Tests implementation: sample with SoapUI Smartbear Api

	Overview

